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The state space of a problem has offered a powerful technique for representing
problems and describing the behaviour of problem selving subjects. In this study the
effects of symmetry within the structure of a problem on the behaviour of subjects
solving that problem is presented through three experiments. The first two experiments
are fairly direct tests of symmetry effects in the Tower of Hanoi probiem and an
isomorph. The third experiment provides an indirect test of the use of symmetry by a
problem task with no obvious symmetry, but containing symmaetric subproblem tasks.
The discussion focuses on the results of the symmetry tests as well as on the state space
method for characterizing symmetry effects.

Introciuction

The purpose of this paper is twofold. Firstly to present the state space representation of
a problem situation and to demonstrate its utility for describing the symmetry
decompositions of a problem. Secondly, in three experiments the state space method
will be used to demonstrate the effect on problem solving behaviour of symmetries
present in the structure of certain problems, namely the 4-ring Tower of Hanoi problem
(TOH} and an isomorph, i.e. a problem differing in appearance, but identically
structured.

The state space analysis of a problem is taken from mechanical problem solving
theory. It results from the study of search through problem situations in an attempt to
find efficient solutions. This approach to problem solving has been described by Amarel
(1968)andNilsson (1971). The state space method of analysing buman problem solving
behaviour has been described in research by Hayes & Simon (1975}, Goldin & Luger
(1975), and Luger {1976). In the Luger research the state space analysis was used to
measure “goal directedness’ and the use of “subgoals™ by problem solving subjects.
Further, the state space method has been used to measure transfer effects of subjects
. solving two problems of related structure (Simon & Hayes, 1976; Reed, Ernst &
Banerji, 1974; Luger & Bauer, 1978; Luger, 1979).

The TOH and its state space will be used to exemplify this approach. Furthermore the .
effects on subjects’ behaviour of the symmetry present in the TOH and an isormorph will :
be analysed in three experiments.
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In the TOH problem four concentric rings (labelled 1,2, 3,4, respectively) are placed
on the first of three pegs (labelled A, B, C, respectively). Whenever the rings are placed
on any peg the size order must be preserved, that is, larger rings must always be below
smaller rings. The apparatus is pictured in Fig. 1(a). The object of the TOH problem is
to transfer all the rings from peg A to peg C in the minimum number of moves. Only one
ring may be moved at a time and, as noted above, no larger ring may be placed over a
smaller ring on any peg.

(v

F1G. 1. (2) The Tower of Hanoi problem in its start pesition. A, B, C, 1,2, 3, 4, relate to the state space of
Fig. 2 and illustrate the isomorphism refationship with RRS. (b) The Railroad Switching problem in its start
state. 1, 2, 3, 4 are replaced by engine, passenger car, mail car, guard car, respectively.

Figure 2 is the complete state space representation of the 4-ring TOH problem. The
four letters labelling a state refer to the pegs on which the four rings are located. Thus,
state CCBA indicates that ring 1 (the first “C” and smallest ring) and ring 2 (the second
“C” and second smallest ring) are in their proper order on peg C; ring 3 (the “B” and
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F1i. 2. The state space representation of the Tower of Hanoi and Railroad Switching problems. The four

letters labelling a state refer to the pegs (tracks) on which the four rings (cars) are located. Legal moves effect

transitions between adjacent states. Note examples of 1-, 2-, and 3-ring subproblem spaces and two paths
symmetric in the state space.

second largest ring) is on peg B; while the largest ring is on peg A. The states adjacent in
the diagram are connected by the legal moves of the problem. The solution path
containing the mihimum number of moves from peg A to peg C consists of the 15 steps
from AAAA to CCCC down the right side of the state space diagram.

The TOH problem has a natural decomposition into nested subproblems. For
example, to solve the 4-ring TOH it is necessary at some point to move the largest ring
from peg A to either peg B or peg C. But before this can be done the three smaller rings
must be assembled in their proper order on the other or “rest” peg, i.e. to move the
largest ring from A to B, the three smaller rings must be on peg C. The problem of
moving the'top three rings from one peg to another is called a 3-ring subproblem of the
4-ring TOH. Thus the 4-ring TOH contains three 3-ring subspaces, differing by the
position of ring 4. Similarly, each 3-ring subspace contains three 2-ring subspaces for a
total of nine in the 4-ring TOH. Each 2-ring subspace may be further decomposed into
three 1-ring subspaces. (Note examples of subproblem spaces in Fig. 2.)

It should be realized that the structure of moves within each n-ring subproblem is
identical for any fixed n. Thus, even though the “start” and the “‘goal” pegs and the
position of rings larger than n may differ in each instance, a one-to-one onto mapping
exists which preserves the sets of possible legal moves within each subproblem. That is,
each move within one subproblem corresponds with one and only one move within a
second subproblem, and conversely. In this sense all TOH subproblems of rings, for
fixed n, are said to be isomorphic.
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The TOH problem possesses considerable symmetry. For example, if the start state
has all rings on peg A as in Fig. 2 any sequence of moves, or path within the TOM state
space, has a symmetric opposite (called the symmetric conjugare) found by holding A
fixed and exchanging B and C wherever they occur in the label of a state entered. This
symmetry takes state BBAA into CCAA, state CCBC into state BBCB and the goal
state CCCC into BBBB. (Note the example of two symmetric paths in Fig. 2.) Were the
three pegs of the TOH board to be arranged at the corners of an equilateral triangle (as
are the tracks of the Railroad Switching problem described below) the symmetry
transformation would represent the geometric operation of reflection about an altitude
of the triangle.

Similarly, each n-ring subproblem of the 4-ring TOH possesses symmetry mappings.
In the top 3-ring subproblem of Fig. 2, for example, the two paths are symmetric. The
paths through the bottom two 3-ring subproblems, however, are not symmetric in a
3-ring subproblem. They are examples of conjugate, i.e. identical paths through two
(different) isomorphic 3-ring subproblems. Pairs of symmetry paths may be generated
by taking one path, holding the letter representing the start peg constant, and exchang-
ing the other two letters wherever they occur in the label of a state. An alternative
description of symmetry of 2 TOH move sequence is to retain the “start” peg and
excharnge the roles of the “rest” and “goal” pegs wherever they occur in the sequence.
For example, if the original move sequence took aset of rings from peg A to peg C using
peg B as the temporary or “rest” peg, the symmetric conjugate would take the rings
from peg A to peg B using peg C as the temporary or “rest” peg.

When the subject solving the 4-ring TOH problem makes a sequence of moves of
rings on the TOH problem board, this sequence is represented as a series of paths
through the TOH state space representation. Figure 3 represents the behaviour paths of
one subject asked to solve the 4-ring TOH. In this example the start was AAAA and the
goal state CCCC. The subject was asked to solve the problem in the fewest possible
number of moves. This she did on her third attempt (trial 3). Note also that the second
trial is interrupted atstate CCCA, and is followed by its symmetric conjugate (the first
half of trial 3) through the top 3-ring subproblem. This subject had been instructed that
she could interrupt any trial and start over when she either “‘got confused or saw a better
way of solving the problem”.

In each of the three experiments described below, two tasks were given to each
{independent) group of subjects. The first task required the subject to make a certain
sequence of moves. For example, in Experiment 1, the subjects were asked to make the
minimum sequence of moves of four rings from peg A to peg C. The subjects were
“encouraged to experiment with the moves, starting over when they got confused or saw
a “better way”. Only when they had met the criterion of the first task was the second
task given, which was to make another sequence of moves that in some way included
symmetries of the first task sequence. For example, in the first experiment the subject
upon successfully moving the four rings from peg A to peg C was asked to move the four
* rings from peg A to peg B in the minimum number of moves. It was tested whether the
subject immediately produced the symmetric conjugate to the previous minimal path
solution or whether the subject passed through a trial-and-error period to discover the
minimal solution as had been done in performing the first task. If the subject used a
sequence of trials to get the second minimal path solution then little was ‘“transferred”
from the first task. If on thé®other hand, and as this paper predicts, the minimal solution
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F1G. 3. The behaviour paths of one subject solving the TOH problem in Experiment 3. The first four trials
make up the first task. State BBBC is the blocked state which the subject cannot enter in the second task. The
3-ring subprablems are labelled X, Y, and Z.

path is immediately produced, then: (1) the symmetries of a *“learned” solution strongly
effect the behaviour of a problem solving subject, (2) the state space representation of
the problem situation can characterize the subject’s symmetry behaviour in these
instances, and (3) any strategies (Simon, 1975) used by subjects must have represen-
tation that includes possibility of generalization to the symmetries of a learned
situation. This point will be addressed further in the discussion.. .
Finaily, before describing the experiments, it is necessary to note the statistical test
employed to measure the significance of the symmetry effect in the population of
subjects. First, on examining subjects’ paths immediately preceeding and following the
test for symmetry in all three experiments, it was determined that 84% (237 of 282) of
" all paths through 3-ring subproblems, no matter where these subproblems occurred in
the solution paths, were in the minimum number of moves. Secondly, there were two
choices to be made in solving the top 3-ring subproblem: to start at state AAAA and go
to the left to state CCCA, or to go to the right to state BBBA (cf. Fig. 2). Thus, the null
hypothesis states that the probability of a symmetric path through the top 3-ring
“subproblem is the product of the probability of a minimum 3-ring subproblem solution
and the probability of one of two equally likely 3-ring solutions or (0-84) % (0-5) or
42%. This expected value was compared with the actual problem solving data by the
chi-square test.
Similarly, the expectation of a symmetric path through the 4-ring TOH problem was
taken as the square of the probabilis of a symmetric path through a 3-ring subproblem.
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This is because the 4-ring symmetry path is composed of two 3-ring paths. Again, this
expected value was compared with the actual data using the chi-square test.

Experiment 1

METHOD

Thirty-two second-year Edinburgh University psychology undergraduates (15 male
and 17 female} volunteered for the study. They were seated in a small well-lighted
testing booth with the TOH board in the “start’ state [Fig. 1(a)] in front of them. The
experimenter, present throughout the problem solving session, recorded on a tape
recorder the sequences of moves. This tape was later examined to reconstruct on the
TOH state space (Fig. 3) the sequences of moves made during the problem solving
session. ‘ ‘

The instructions, read by the experimenter and available to the problem solver,
explained the TOH problem, the “start” and “goal” states, and the set of legal moves:
“only one ring may be moved at a time and no larger ring may be placed over a smaller
ring on any peg’”. The subjects were told they could “start over any time they were
confused or saw a better way of solving the problem”. The first task sub jects were given
was to produce the minimal set of moves that took all four rings from peg AtopegC. If
the subject took the rings to peg C but not in the minimal number of moves, he or she
was informed that this was the case and encouraged to “start over and try to solve the
problem in fewer moves™.

When the 15 move solution criterion was met, the following instructions for the
second task were given “Good, you have moved the rings from peg A topeg Cin the
fewest number of moves. Now, try to move the four rings from peg A to peg B in the
fewest number of moves. Again you may start over if you get lost or see a better way of
solving the problem”. As mentioned in the preceeding section the second task was the
symmetric conjugate of the first task.

RESULTS AND DISCUSSION

The results of Experiment 1 are given in Table 1. Of the 32 Ss, 21 produced perfect
symmetry solutions for the first 3-ring subproblem encountered in the second task. That
is, for the first 3-ring subproblem, the first trial of the second task was the symmetric
conjugate of the last trial of the first task for 21 of 32 subjects. Using the expected values
discussed in the previous section and the chi-square test this is significant at the 0-01
level.

Of the 32 Ss, 16 produced a perfect symmetry solution through the entire 4-ring TOH
state space. That is, the entire first trial of the second task was the symmetric conjugate
of the last trial. of the first task. Using the chi-square test and the expected values
discussed in the previous section this is significant at the 0-001 level. :

It is interesting to note on further analysis of the data for the 32 Ss of Experiment 1,
that six of the-11 Ss not showing perfect symmetry in their first trial of the second task
actually started this trial towards goal CCCC (the goal of the previous task). Before
reaching this goal, however, the subjects interrupted their paths and started towards
goal BBBB (the symmetric conjugate). Allsix Ss completed the symmetric path through
the top 3-ring subproblem and four of the six completed the entire symmetry to goal
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TabBLE 1
Data and significance levels for Experiments | and 2

E::_cp. 1(N=32) Exp. 2 (N =25}

Number of Ss  Significance Number of 85 Significance

Perfect 3-ring symmetry 21 0-01 17 0-02
Symmetric interruption followed

by 3-ring symmetry & 4

No symmetry 5 4

Perfect 4-ring symmetry 16+ 0-001 16% ¢-001
Symmetric interruption followed

by 4-ring symmetry 4 3

No symmetry 12 6

+ One subject took one extra step and immediately retracted it.
¥ Six subjects each added one extra step and immediately retracted it.

BBBB. Thus these subjects, although not meeting the strict symmetry criterion of the
tasks, actually employed a symmetric pair of paths in attaining the desired goal.

Finally, during the first task of experiment one the Ss used an average of 3-7 trials
before producing the minimum step criterion trial. There was an average of 19 moves in
each of these non-minimal paths. The average time to production of the criterion path -
(not counting time between trials) was 340 s. Recall that the test for production of the
symmetric opposite minimal step path was during the first trial of the second task.

In designing a second experiment it was decided to test for the presence of symmetry
in subjects’ solutions of an isomorph of the 4-ring TOH problem. In particular, an
isomorph whose actual physical embodiment was in the form of an equilateral triangle
‘in order that the problern symmetries might be more perceptually apparent. For thls
purpose the 4-car Railroad Switching problem was devised.

Experiment 2

In the Railroad Switching problem (RRS) a train of four cars (engine, passenger, mail,

rand guard cars) was parked in one of three tracks (labelled A, B, C) placed at the corners

" of an equilateral triangle. The object of the game was to transfer the four cars to another
track with the restrictions that only one car may be moved at a time, and no car may be
removed from the tracks. Labelled blocks make up the “train” and small constraints
make up the “‘tracks”. The device is pictured in Fig. 1(b). There are fixed stopping
places for each car (“engine only”, “passenger car only”, etc.) marked on the tracks.
This, along with the constraint that no car may be picked off the track corresponds to the
TOH constraint that no larger ring may be placed over a smaller ring on any peg. In fact,
when the task is given to move the cars from track A to track C, it may be checked that
TOH and RRS are exact isomorphs. In particular, both are represented by the state
space of Fig. 2, having the same “start” and “goal” states and the same symmetry and
possible subproblem decompositions.
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METHOD

Twenty-five second-year psychology students at the University of Edinburgh (seven
males and 18 females) volunteered for the study. The testing situation and proceedures
were exactly the same as for the first experiment except that the 4-car RRS was used in
place of the 4-ring TOH. The subjects’ first task was to move the four cars from track A
to track C in the minimum number of moves. When this criterion was met on this task,
the Ss were given the second task of moving the four cars from track A to track B in the
fewest number of moves.

RESULTS AND DISCUSSION

The results of Experiment 2 are given in Table 1. Note that of 25 Ss, 17 produced, at the
first trial of the second task, a symmetry path through the first 3-car subproblem. This
path, as in the previous experiment, was the symmetric conjugate in that subproblem of

"the last trial of the first task. The chi-square test shows this to be significant at the 0-02
level.

For the entire 4-car RRS problem 16 Ss produced the symmetry path all the way to
goal state BBBB on their first trial of the second task. Using the expected values
discussed above and the chi square test this is significant at the 0-001 level.

Three of the eight Ss not having perfect symmetry paths through the top 4-car
subproblem actually began their first trial of the second task towards goal CCCC.
Before reaching that goal they interrupted their path, asked to start again, and
proceeded towards goal BBBB. One of the eight subjects actually started and stopped
two trials before completing the symmetric conjugate in the top 3-car subproblem of the
last trial of the first task. Three of these four subjects produced symmetric paths through
the entire 4-car RRS problem. Thus, these subjects although not meeting the strict
symmetry criterion in compieting the second task of Experiment 2 actually produced
pairs of symmetric paths in the process of arriving at the production of this symmetry
path. ‘

Thus the number.of symmetry paths produced in Experiment 2 seemed to be
roughly equivalent to the number produced in Experiment 1. If it were desired to
further study the importance of the physical aspects of the problem it would be
necessary to design further experiments, perhaps placing the pegs of the TOH at the
corners of an equilateral triangle as are the tracks in the RRS problem.

Before producing the minimal path criterion of the first task of Experiment 2, Ss used
an average of four 22 state attempts. The average time to criterion for all Ss, not

_ counting time between trials, was 352 s. The symmetry test was made on the first trial of
the second task.

Experiment 3

The previous two experiments asked subjects to pefform a second task that was the
direct symmetric conjugate of the first task. It was decided in the third experiment, using
again the 4-ring TOH problem, to give a second task that was not the direct symmetric
conjugate of the first task, but that on the 3-ring level included path sections that were
symmetric to portions of the previous task. Thus the third experiment was designed to
study transfer &fects not between consecutive minimal path solutions, as had Experi-
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ments 1 and 2, but tested for transfer to a new task that was longer than the first (by eight
states) and although it was itself a minimal path, different portions of the task were
symmetric to portions of the previous criterion path. Thus the criterion path for the
second task contained two 3-ring subproblems directly symmetric to the 3-ring sub-
problems of the previous task and also contained a third 3-ring subproblem that was not
symmetric to any portion of the criterion path of the first task. To design such an
experiment the “blocked state” discussed in the next section was developed.

Finally, it was decided to set the criterion for the first task of Experiment 3 as two
consecutive minimal path solutions. It was hoped that this would result in fewer
interrupted symmetric paths at the beginning of the second task, as had occurred in the
previous experiments (six and four Ss, respectively).

METHOD

Twenty-one fourth-year psychology students (nine male and 12 female) at the Uni-
versity of Edinburgh volunteered. for this study. The TOH problem was used as in
Experiment 1. The effects of symmetry were tested indirectly, however, using the
following procedures: the first task given to the Ss was identical to the first task of
Experiment 1 except that criterion was set as two consecutive minimal solution paths
from peg A to peg C. If this criterion was met the subjects were given the second task. In
this task they were told state BBBC would be “blocked” and could not be entered and
asked to find a new minimal step solution from AAAA to CCCC, by-passing the
blocked state.

Figure 3 gives the behaviour of a typical subject in the third experiment. The first four
trials make up the solution to the first task, the last two trials making up the solution to
the second task. It may be observed in Fig. 3 that the “blocked” state BBBC was a
critical step in the 15 step minimal solution to the first task. In fact, this state, with the
smallest three rings on peg B and the largest ring moving from peg A to peg C, provides
the only direct access to the lower right-hand side 3-ring subproblem (marked Z in Fig.
3). With the blockage, this subproblem may only be entered from the opposite side
{from 3-ring subproblem, Y in Fig. 3), with the three smallest rings on peg A and the
movement of the largest ring from peg B to peg C. The minimum set of moves in the
blocked situation then is 23. These are the moves of trial 6 in Fig. 3.

Note that the 23 move minimal solution is not symmetric on the 4-ring level with the
first task of Experiment 3, but that paths through two of the three 3-ring subproblems
that make up this solution are symmetric conjugates of paths through the 3-ring
subproblems that make the criteria of the first task. These are the first eight moves
through the top 3-ring subproblem (X in Fig. 3) and the last eight moves through the
final 3-ring subproblem (£ in Fig. 3). Experiment 3 measured the effects of this
symmetry on the behaviour of the problem solving subjects. In particular, the first

attempt to solve the TOH problem with the blocked state in the minimum number of .

moves was examined to determine if the three 3-ring subproblems that make up the
solution were solved in the minimum number of moves.

The instructions describing the blocking of state BBBC and the second task of finding
the alternative minimal solution follow {a second board-was used to demonstrate):

Good, you have managed to solve the TOH correctly on two successive trials. In
solving the problem you first moved rin8s 1,2, and 3 ontopeg Band thenring 4 onto
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peg C. You then followed this by moving rings 1, 2, and 3 on to peg C. Before you is
another TOH board with rings 1, 2, and 3 on B and ring 4 on C. This is one of the
positions of the pieces on the direct path of the sclution. This position now becomes
illegal in that you cannot move the pieces into this position. This position thus
represents a “blockage” in the direct solution path. I would like you again to solve the
problem in a minimum number of moves but this time by-passing the blocked
position. The new solution, of course, now consists of more moves than did the
original solution.

The second TOH board, in the position of the blocked state, was placed in front of the
problem solver but not s0 as to obstruct the TOH board the subject used.

RESULTS

The results of Experiment 3 are reported in Table 2. In the first 3-ring subprobleém
encountered in the second task 16 of 21 subjects produced the minimal solution. In the

TapLE 2
Data and significance levels in Experiment 3. X, Y, and
Z are the three 3-ring subproblems entered in task 2
(cf. Fig. 3)

Exp.3 (N =21)

Perfect 3-ring
subproblem symmetry  Significance

Subproblem X 16 0-01
Subproblem Y 7 NS
Subproblem Z 16 0-01
~ .

second 3-ring subproblem encountered seven of 21 subjects produced the minimal
solution, and in the third 3-ring subproblem 16 of 21 subjects produced the minimal
solution. Using the chi-square test and.the criterion described above 16 of 21
minimal solutions is significant at the (001 level, seven of 21 minimal solutions is not
significant and 16 of 21 minimal solutions is significant at the 0-01 level. Note again that
the minimal paths through the first and third 3-ring subproblems are the symmetric
conjugates of the 3-ring subproblems that make up the criterion trial of the first task of
Experiment 3, while the minimal path through the second 3-ring subproblem is not the
symmetric conjugate of any previous path the Ss have been asked to produce. Finally,
the 21 Ss required an average of 3-9 trials, with an average of 20 states in each trial,
before producing the criterion paths on the first task. The test for transfer effects was
made on the first attempt of the second task.

Discussion

Symmetry present in a problem salving environment often plays an important role in
the problem solvers’ solutions (Polya, 1945; Gelernter, 1963). However true this
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statement may seem, there is very little evidence of whar the role of symmetry is, when
it is used by the problem solver or even how the symmetry present in a problem
environment is to be characterized. This reszarch has attempted to answer these
questions in the limited domain of the TOH problem and an isomorph.

Firstly, the state space representation of a problem environment is proposed not only
to accurately present all the steps or moves, goals, and blind alleys of the problem, but to
characterize the “‘structure” of the problem including its subproblem and symmetry
decompositions. Especially in problems like the Missionaries and Cannibals, Noughts
and Crosses, NIM and the Tower of Hanoi, this method of problem representation may
be quite powerful (Amarel, 1968; Goldin & Luger, 1975; Nilsson, 1971).

Secondly, the behaviour of subjects solving the problem may be described by paths
through the state space representation of the problem. This is possible as long as the
eavironmental situations considered distinct by the problem solver are represented by
distinct states in the state space. Furthermore, the subproblems and symmetries used by
the problem solver in the process of solution are readily available to empirical
investigation.

Our research (Luger, 1976, 1979; Luger & Bauer, 1978) has proposed that problem
solving is a process of discovering and using the invariants of the problem domain.
These invariants may be known by researchers in an a priori analysis of the structure of
the problem, where characterizations such as the state space used in this research may
be helpful. The presence and the use of these invariants were bases for the hypotheses of
this study. We proposed that as the subjects determined these problem invariants, they
would be used in achieving the goals of the task. [Luger ( 1976, 1979) gives an account of
subproblem invariance in the Tower of Hanoi problem and an isomorph.]

"The symmetry invariant of the Tower of Hanoi problem domain is the main focus of
this paper. The symmetry transformation of the Tower of Hanoi problem changes the
values of certain observables of the problem such as “rest” and “target” pegs while
preserving other relationships among the states of the problem, e.g. its nested sets of
subproblems. The-tatent of this study was to give two tasks within each problem to each
group of subjects. After meeting criteria on the first task, it was hypothesized that
subjects would use a symmetry of the first task to perform the second task. That s to say,
it was hypothesized that in their first attempt at the second task they would produce the
symmetric conjugate of the solution to the first task (which had taken them about four
trials to produce). The behaviour paths and the statistical analysis of these paths gives
strong evidence that the symmetry invariants were in fact used by subjects in solving the

second task in each of these experiments. The evidence is particularly compelling in the
* third experiment when Ss in the second task generated minimal path solutions through
3-ring subproblems when these were symmetric conjugates of 3-ring subproblem
solutions of the first task and failed to generate minimal paths through the 3-ring
subproblem that did not have a symmetric conjugate within the previous solution.

The spontaneous comments of subjects in the first two experiments lead further
evidence to the use of symmetry. “It’s a matter of changing everything around, isn’t it?”
“It should be the same, I suppose, if I just reverse the moves.” “Both are exactly the
same. You put it to the right and you put it to the left”, and “you just have to get the
intermediate items out of the way to get the largest to the goal”. The use of general
words such as “changing everything around”, “both...the same’’, ‘“‘reverse the
moves”, “largest”, “intermediate items™ and “‘goal” are strong indications that a
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symmetry transformation is utilized. But again, the strongest evidence for use of
symmetry is not the words subjects use but the behaviour paths they create through the
state space. These indeed form the statistical evidence for subjects’ use of the symmetry
invariants. Finally, it may be hypothesized that the problems’ invariants make up “what
is learned” in performing the first task in this study and offer an explanation of the
transfer effects evident between the two tasks of each of the three experiments.
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